Hondas umweltfreundlicher Scooter:

Der neue Elektroroller EV-neo

Offenbach, 16. Juni 2011 – Honda hat in Barcelona den neuen Elektroroller EVneo vorgestellt: ein umweltfreundlicher Scooter für die Stadt, wendig und komfortabel, mit dem der Fahrer eine Reichweite von 34 Kilometern hat.

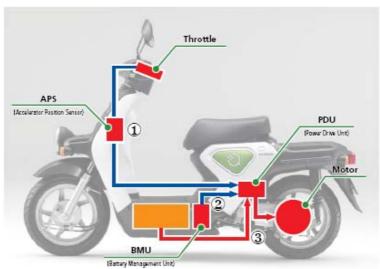
Der Elektromotor des einsitzigen Rollers leistet 2,8 kW / 3,8 PS. Das Fahrzeug (1,83 Meter lang und 110 Kilogramm schwer) verfügt über eine Kombibremse, die gleichzeitig auf Hinter- und Vorderrad wirkt.

Die Lithiumionen-Batterie kann an einem haushaltsüblichen Stromanschluss nachgeladen werden. Mit dem normalen Ladegerät dauert es dreieinhalb Stunden, bis die Batterie wieder ihre volle Kapazität hat. Das mobile Ladegerät kann im Fach unter dem Sitz mitgeführt werden. Mit dem größeren Schnellladegerät verkürzt sich der Ladevorgang auf eine halbe Stunde.

Umweltfreundlicher Cityflitzer: der EV-neo

Die bisherige Entwicklung des EV-neo

Seit April kann der EV-neo in Japan geleast werden, und Honda erwartet im ersten Jahr einen Absatz von 1.000 Stück. Der EV-neo wird außerdem in den Präfekturen Kumamoto und Saitama in den Honda-Testprogrammen für Elektrofahrzeuge eingesetzt. Diese Testprogramme, an denen auf elektromobilen Technologien basierende Motorräder, PKWs und Technologien zur Energieerzeugung teilnehmen, werden dazu beitragen, die zukünftigen Formen der persönlichen Mobilität und ihr Potenzial zur CO2-Reduzierung zu erproben. Im Kumamoto-Programm werden EV-neo-Roller an Einwohner und Touristen vermietet. In Saitama werden die Roller an Lieferunternehmen verleast.

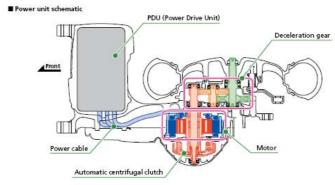

Auch in Europa wird der EV-neo jetzt getestet: Die Stadtverwaltung von Barcelona erhält für ein Jahr 18 Fahrzeuge.

Das EV-System

Honda hat das EV-System für den EV-neo so entwickelt, dass der Betrieb grundsätzlich dem eines Benzinrollers entspricht. Der Fahrer betätigt den Gashebel, und ein Gaspositionssensor (APS - Accelerator Position Sensor) setzt den Öffnungsgrad der Drosselklappe in ein elektrisches Signal um. Die Antriebseinheit PDU berechnet auf Basis des APS-Signals und der Informationen von der BMU** die optimale Ausgangsleistung des Motors. Um diese optimale Ausgangsleistung zu produzieren, sendet die PDU die entsprechende Strommenge von der Batterie an den Motor.

* PDU = Power Drive Unit (Antriebseinheit) ** BMU = Battery Management Unit (Batteriemanagementeinheit) Verwaltet den Batteriezustand (Temperatur, Restladung und weitere Parameter).

Das EV-System



APS Acceleration Position Sensor	APS Gaspositionssensor
Throttle	Gashebel
PDU (Power Drive Unit)	PDU (Antriebseinheit)
Motor	Motor
BMU (Battery Management Unit)	BMU (Batteriemanagementeinheit)

Antriebseinheit

Honda hat die kompakte Antriebseinheit des EV-neo so konstruiert, dass sie sich sauber in die ungefederten Teile der Maschine einfügt. Der EV-neo bietet eine Leistung von 2,8 kW (Nennleistung 0,58 kW) – was der Leistung eines Benzinkraftrads der gleichen Klasse entspricht. Auch bei voller Beladung mit 30 kg startet die Maschine reibungslos und kann eine 12°-Steigung problemlos bewältigen.

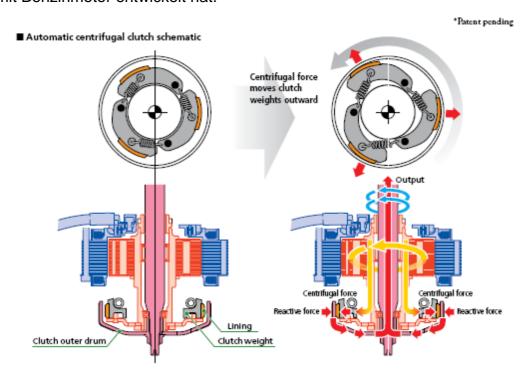
Um die Antriebseinheit möglichst kompakt zu halten, hat Honda alle Teile so konstruiert, dass Gewicht, Größe und Performance optimal ausbalanciert sind.

	Schematische Darstellung der
Power unit schematic	Antriebseinheit
PDU (Power Drive Unit)	PDU (Antriebseinheit)
Deceleration gear	Schubabschaltung
Power cable	Stromkabel
Motor	Motor
Automatic centrifugal clutch	Automatische Fliehkraftkupplung

• PDU = Antriebseinheit

Die PDU setzt sich aus zwei Bereichen zusammen:

<u>12V-Steuerbereich</u>: Der Steuerbereich verwaltet kontinuierlich den Strom für das gesamte Fahrzeug (Motor, Instrumente, Scheinwerfer und Ladegerät). Über ein Controller Area Network (CAN), das eine zuverlässige Datenübertragung sichert, kommuniziert die PDU mit der BMU.


72V-Fahrerbereich: Der Fahrerbereich wandelt den Gleichstrom der Lithiumionenbatterie in 3-phasigen Wechselstrom um, der den Motor antreibt. Dadurch, dass die PDU direkt hinter der Triebsatzschwinge und zwischen Batterie und Motor platziert wurde, ist die Kabelverbindung zwischen diesen drei Teilen kürzer, die Antriebseinheit insgesamt kompakter und die Stromübertragung effizienter.

Motor

Der bürstenlose Gleichstrommotor funktioniert mittels eines innenliegenden Permanentmagneten, der auch bei niedrigen Drehzahlen hohe Leistung für eine hervorragende Anfahrbeschleunigung liefert. Um eine reibungslose Beschleunigung bei hohen Drehzahlen und eine effiziente Performance im gesamten Drehzahlbereich zu gewährleisten, nutzt der Motor effektiv das Reluktanzmoment, das durch die Anziehungskräfte zwischen den Magneten und Stahlteilen entsteht.

Automatische Fliehkraftkupplung

Der EV-neo ist für verschiedenste Nutzungsbedingungen ausgelegt (ebene Strecken, hügelige Strecken, beladener Zustand etc.) und hierfür mit einer automatischen Fliehkraftkupplung ausgestattet, die Honda exklusiv für Elektrofahrzeuge entwickelt hat. Diese Kupplung baut auf der erfolgreichen automatischen Fliehkraftkupplungstechnologie auf, die Honda für seine Roller mit Benzinmotor entwickelt hat.

Automatic centrifugal clutch schematic	Schematische Darstellung der
	automatischen Fliehkraftkupplung
*Patent pending	*Zum Patent angemeldet
Centrifugal force moves clutch weights	Fliehkraft drückt Kupplungsgewichte
outward	nach außen
Output	Ausgangsleistung
Centrifugal force	Fliehkraft
Reactive force	Reaktionskraft
Clutch outer drum	Kupplungstrommel
Lining	*Zum Patent angemeldet
Clutch weight	Kupplungsgewicht

Getriebe

Der Motor des EV-neo benötigt kein Getriebe. Dadurch konnte der Motor flexibel positioniert und Effizienz im gesamten Drehzahlbereich erzielt werden. Der Motor befindet sich links neben dem Hinterrad und nutzt lediglich bei Bedarf eine Schubabschaltung. Dadurch ist nicht nur die Antriebseinheit leichter, sondern diese Getriebekonfiguration eliminiert darüber hinaus die beim Schalten auftretenden Leistungsverluste, so dass der Batteriestrom sehr effizient genutzt wird.

Schubabschaltung mit regenerativem Ladevorgang

Sobald der Fahrer den Gashebel loslässt, setzt beim EV-neo die Schubabschaltung mit regenerativem Ladevorgang ein, wodurch die Batterie geladen wird. Der EV-neo optimiert das Drehmoment, das während des regenerativen Ladevorgangs erzeugt wird, und bietet damit ein "Motorbremsgefühl", das dem eines Kraftrads mit Benzinmotor nahe kommt.

Lineare Gasannahme

Der EV-neo reagiert sofort auf die Betätigung des Gashebels, indem er die benötigte Menge Strom an den Motor überträgt, um die gewünschte Leistung zu erzeugen. Das Ergebnis ist eine Gasannahme, die ein präzises Beschleunigen

und Abbremsen ermöglicht. Dadurch, dass der Motor auch bei niedrigen Drehzahlen ein maximales Drehmoment erzeugen kann, bietet der EV-neo eine sehr stabile Performance bei der Anfahrbeschleunigung und bei niedrigen Geschwindigkeiten.

Batterie

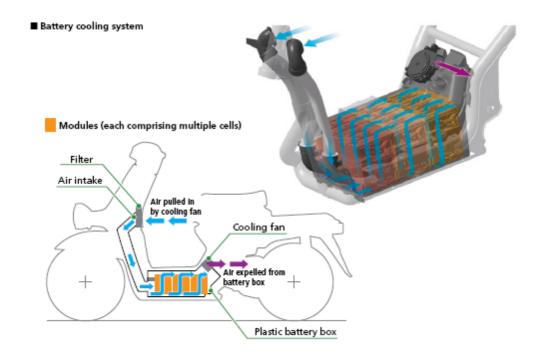
Reichweite

Die Batterie besteht aus 90 SCiB-Zellen und hat eine Kapazität von 907 Wh (72 V x 12.6 Ah (1HR)). Diese Kapazität wurde von Honda in der Testphase aus dem Nutzungsmuster eines typischen Fahrers errechnet. Damit hat die Maschine auf ebener Strecke bei 30 km/h eine Reichweite von 34 Kilometer.*
*Die Berechnungen von Honda basieren auf vorgegebenen Testbedingungen (der Benutzer wird in Abhängigkeit von Wetter, Straßenverhältnissen, Fahrzeugzustand und Wartung und anderen Parametern möglicherweise andere Ergebnisse erhalten).

Leistung bei niedrigen Temperaturen

Allgemein gilt: je niedriger die Batterietemperatur, desto niedriger die Leistung. Die Zellen der EV-neo-Batterie bieten jedoch eine exzellente Leistung auch bei niedrigen Temperaturen. Darüber hinaus fühlt die BMU niedrige Temperaturen und gibt diese Information an die PDU weiter, die daraufhin die Motorleistung begrenzt (Limited-Output-Modus).

In diesem Modus fährt der EV-neo mit einer etwas reduzierten Beschleunigungsleistung. Sobald der EV-neo in Bewegung ist, gibt die Batterie Strom ab und beginnt sich aufzuwärmen. Überschreitet die Batterietemperatur eine bestimmte Schwelle, schaltet die PDU vom Limited-Output-Modus in den Normalmodus um, und die Beschleunigungsleistung normalisiert sich.


Limited ouptut mode indicator	Anzeige Limited-Output-Modus
Turtle icon indicating limited output mode	Schildkrötensymbol zeigt Limited-Output-
	Modus an
Note: Meters illuminated for photograph	Hinweis: Instrumente für Foto beleuchtet

Leistung bei hohen Temperaturen

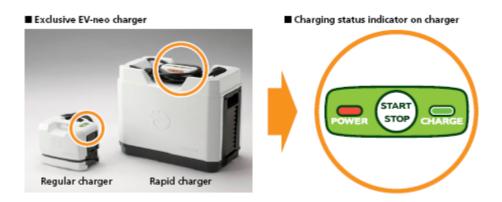
Bei hohen Temperaturen verursacht die automatische Nachladung der Batterie einen Temperaturanstieg, und normalerweise müsste der Fahrer langsamer fahren, um eine Minderung der Batteriekapazität zu vermeiden.

Beim EV-neo wird jedoch, wenn die Batterietemperatur über einen festgelegten Wert steigt, ein Lüfter aktiviert, der Luft in das Batteriegehäuse bläst und den Temperaturanstieg verringert.

Dieses System unterstützt die automatische Nachladung, so dass der EV-neo zu jeder Tages- und Jahreszeit benutzt werden kann.

Battery cooling system	Batteriekühlsystem
Modules (each comprising multiple cells)	Module (jedes mit mehreren Zellen)
Filter	Filter
Air intake	Lufteinlass
Air pulled in by cooling fan	Luft wird durch Ventilator eingesaugt
Cooling fan	Ventilator
Air expelled from battery box	Luft wird aus Batteriegehäuse
	ausgestoßen
Plastic battery box	Kunststoffbatteriegehäuse

Verlustfreie Nutzung der vollen Batterieladung


Bei Batterien, in denen viele Zellen in Reihe geschaltet sind, beeinträchtigen die Zellen mit der niedrigsten Restladung die Kapazität des gesamten Systems und setzen damit die Reichweite des Fahrzeugs herab. Dagegen ist die Batterie des EV-neo mit einem Ladungsausgleichsystem ausgestattet, die eine solche Minderung der Fahrzeugreichweite verhindert.

Aufladung

Das Ladesystem des EV-neo ist für eine lange Lebensdauer auch bei sehr häufiger Nutzung ausgelegt.

Einfach und leise

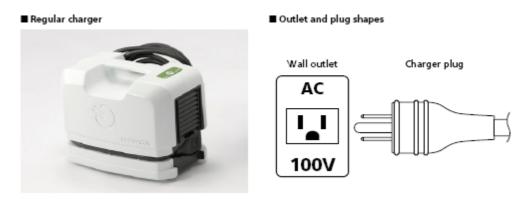
Der Ladevorgang muss bei einem Elektrofahrzeug so einfach, bequem und schnell wie möglich sein. Beim EV-neo verbindet der Fahrer einfach das eine Kabel des Ladegeräts mit der Stromquelle und das andere mit dem Ladeanschluss am Roller und betätigt den Start-Knopf, um den Ladevorgang in Gang zu setzen. Der Ladevorgang stoppt automatisch, wenn der EV-neo vollständig geladen ist. Der Ladestand wird am Ladegerät angezeigt.

Exclusive EV-neo charger	Exklusives EV-neo-Ladegerät
Regular charger	Reguläres Ladegerät
Rapid charger	Schnellladegerät
Charging status indicator on charger	Ladestandsanzeige am Ladegerät

Der Ladeanschluss des EV-neo befindet sich an der linken Seite. Er ist klein, aber robust genug für ein häufiges Anschließen und Entfernen des Ladekabel-Steckverbinders.

Ein Verschlussdeckel an der Karosserie des EV-neo schützt den Anschluss.

■ Charging connector located on left of EV-neo body



Charging connector located on left of EV-	Ladeanschluss an der linken Seite des
neo body	EV-neo-Karosserie
Connector lid lock function	Verriegelungsfunktion Verschlussdeckel
Lid lock	Verriegelung
Lock	Verriegeln
Unlock	Entriegeln

Der EV-neo ist für geräuscharmes Fahren und Aufladen konstruiert. Der Ladevorgang erzeugt maximal 45 dB, sowohl mit dem regulären Ladegerät als auch mit dem Schnellladegerät.

Reguläres Ladegerät

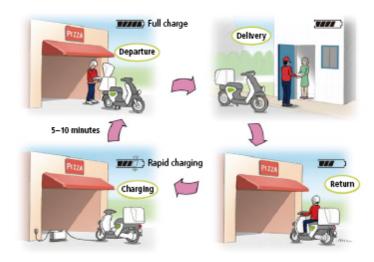
Das reguläre Ladegerät nutzt Haushaltsstrom für einfaches, bequemes Aufladen an jedem Ort. Eine vollständig entleerte EV-neo-Batterie benötigt für eine volle Ladung etwa 3,5 Stunden (bei einer Umgebungstemperatur von 25°C).

Regular charger	Reguläres Ladegerät
Outlet and plug shapes	Steckdosen- und Steckerform
Wall outlet	Wandsteckdose
Charger plug	Ladestecker

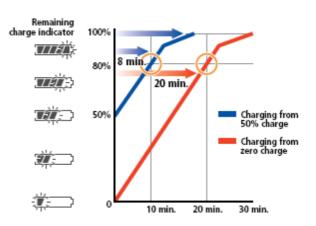
Das reguläre Ladegerät kann überall hin mitgenommen werden und passt in das Gepäckfach unter dem Sitz des EV-neo. Das Ladegerät ist mit Rillen versehen und wird einfach über die dafür vorgesehenen Führungen in das Gepäckfach geschoben und am Griff des Geräts wieder herausgezogen. Auch die Unterbringung der Kabel des Ladegeräts ist intelligent gelöst. Das Gleichstromkabel, das das Ladegerät mit dem Fahrzeug verbindet, wird in einer Führungsrille am Gerät untergebracht, der Steckverbinder in der dafür vorgesehenen Aussparung. Das Wechselstromkabel, das das Ladegerät mit der Steckdose verbindet, wird nach Benutzung aufgerollt und in einem eigenen Fach am Ladegerät verstaut.

■ Stowing and using the regular charger

■ Stowing the DC cord

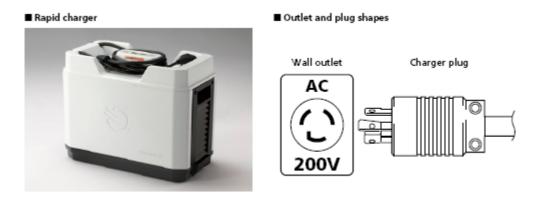


	Unterbringung und Benutzung des regulären Ladegeräts
Stowing the DC cord	Unterbringung des Gleichstromkabels
Stowing the AC cord	Unterbringung des Wechselstromkabels


Schnellladegerät

Eine vollständig entleerte EV-neo-Batterie wird mit dem Schnellladegerät in etwa 30 Minuten aufgeladen (bei einer Umgebungstemperatur von 25°C). Das Schnellladegerät ist außerdem mit einer Stufenladung ausgestattet, die die Batterie mit einer Starkladung bei höherer Ladespannung auflädt, bis sie fast vollständig geladen ist. Dann schaltet das Gerät auf eine geringere Ladespannung zurück und schließt den Ladeprozess ab. Auf diese Weise kann das Schnellladegerät die Batterie des EV-neo zu 100 Prozent aufladen.

■ Top-off charging



■ Step-down charging

Top-off charging	Top-off-Ladung
Full charge	Vollständige Ladung
Departure	Abfahrt
Delivery	Lieferung
5-10 minutes	5 -10 Minuten
Rapid charging	Schnellladung
Charging	Aufladung
Return	Rückkehr
Step-down charging	Stufenladung
Remaining charge indicator	Restladungsanzeige
Charging from 50% charge	Aufladung von 50% Ladung
Charging from zero charge	Aufladung von null Ladung

Das Schnellladegerät ist leicht und kompakt hat einen praktischen Tragegriff. Außer der Stromquelle wird keine zusätzliche Ausrüstung benötigt.

Rapid charger	Schnelladegerät
Outlet and plug shapes	Steckdosen- und Steckerform
Wall outlet	Wandsteckdose
Charger plug	Ladestecker

Ladesystem

Das Ladesystem überwacht kontinuierlich den Ladezustand und die Temperatur der Batterie und passt sich an Veränderungen dieser Parameter an, um den EV-neo einfach, schnell und vollständig aufzuladen.

Das Ladegerät wird von der PDU gesteuert. Der Steckverbinder verfügt über einen Steueranschluss, über den Signale zwischen dem Ladegerät und der

PDU übermittelt werden, sowie über einen Stromanschluss zur Übertragung des Ladestroms. Das System funktioniert folgendermaßen:

Wenn der Benutzer das Fahrzeug über den Steckverbinder mit dem Ladegerät verbindet und den Start-Knopf betätigt, wird die PDU aktiviert und beginnt, Signale mit dem Ladegerät auszutauschen.

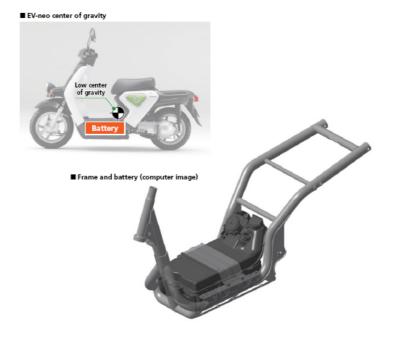
Die PDU reagiert auf die Informationen, die sie von der BMU erhält, und signalisiert dem Ladegerät, dass es den Ladevorgang starten bzw. beenden soll. Bei Verwendung des Schnellladegeräts sendet die PDU auch Signale, um beim Stufenladen die Ladespannung zu regulieren.

Das Ladegerät reagiert auf die Signale der PDU und überträgt über den Stromanschluss des Steckverbinders Strom an die Batterie bzw. beendet die Übertragung.

Die PDU übermittelt den Ladezustand der Batterie an die Ladestandsanzeige der EV-neo-Batterie.

Power source (AC 109200V) Charger Charger connector Charger Charger connector Battery Banasament Unit Remaining charge indicator Power source (AC 109200V) Charger Charger connector BMU Remaining charge indicator

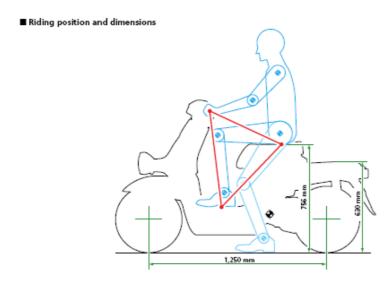
■ EV-neo charging system


EV-neo charging system	Ladesystem des EV-neo
Power source	Stromquelle
Meter	Messinstrument
Charger	Ladegerät
Charger connector	Steckverbinder
Battery	Batterie
PDU (Power Drive Unit)	PDU (Antriebseinheit)
BMU (Battery Management Unit)	BMU (Batteriemanagementeinheit)
Charging-in-progress indicator	Anzeige für laufenden Ladevorgang
Remaining charge indicator	Restladungsanzeige
Charge	Ladung

Karosserie

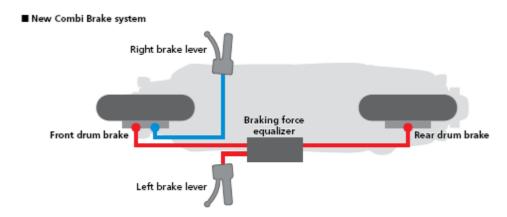
Hervorragende Stabilität

Durch die Unterbringung der Batterie an der Unterseite des Fahrzeugs liegt der Schwerpunkt tief, was die Stabilität des Fahrzeugs verbessert, auch unter Beladung. Der Rahmen des EV-neo hält die Batterie sicher an ihrem Platz und schützt sie vor Stößen. Er ist zudem so konstruiert, dass die zusätzliche Last durch das Batteriegewicht möglichst gering ist.


Schlauchlose Standard-12-Zoll-Reifen vorne und hinten verbessern die Manövrierfähigkeit und mindern die Gefahr von Reifenpannen.

EV-neo center of gravity	Schwerpunkt des EV-neo
Low center of gravity	Tief liegender Schwerpunkt
Battery	Batterie
Frame and battery (computer image)	Rahmen und Batterie (Computerbild)

Aufrechte Fahrposition


Der EV-neo hat einen Rahmen mit tiefem Durchstieg und einen flachen Boden. Damit der Fahrer mit den Füßen leichter den Boden erreicht, sind Sitz und Verkleidung leicht nach innen zur Karosseriemitte gewölbt. Die aufrechte Fahrposition sorgt zudem für ein hervorragendes Blickfeld.

Riding position and dimensions	Fahrposition und Abmessungen
--------------------------------	------------------------------

Neues Kombibremssystem

Der EV-neo ist vorne und hinten mit 130-mm-Trommelbremsen ausgestattet, die ihm reichlich Bremskraft und eine stabile Bremsleistung verleihen. Das neue Combined Brake System (CBS) überträgt Bremskraft auf Vorder- und Hinterrad, wenn der linke Bremshebel betätigt wird (konventionelle Hinterradbremse). Wird der rechte Bremshebel (Vorderradbremse) betätigt, wirkt die Bremskraft nur auf das Vorderrad.

New Combi Brake System	Neues Kombibremssystem
Right brake lever	Rechter Bremshebel
Front drum brake	Vordere Trommelbremse
Braking force equalizer	Bremskraftausgleicher
Rear drum brake	Hintere Trommelbremse
Left brake lever	Linker Bremshebel

Lenkung

Der linke und rechte Lenkwinkel beträgt 50°, der Wenderadius 1,7 Meter.

Design

Bei einem Benzinroller befindet sich der Sitz über dem Motor. Dies ist beim EVneo nicht der Fall. Hier ist reichlich Platz zwischen Sitz und Boden, was den
Fahrkomfort erhöht. In Kombination mit der großzügigen Karosserieverkleidung,
die den Fahrer umgibt, verleiht diese einzigartige Form dem Roller eine
schlichte, aber auffällige Silhouette.

Die leicht zugängliche Abdeckung des Ladeanschlusses mit Stecker-Piktogramm ist das einzige farbige Element des Rollers und signalisiert klar und leicht erkennbar, dass es sich hier um einen Elektroroller handelt.

Instrumente

Im digitalen Tacho ist die Restladungsanzeige als Balken integriert, anhand dessen der Fahrer die mit der Restladung verbleibende Reichweite des Fahrzeugs und die bereits zurückgelegte Strecke leicht abschätzen kann. Ein Tageskilometerzähler erleichtert dem Fahrer zusätzlich die Einschätzung der verbleibenden Reichweite.

Auto Power Save System

Läuft der Motor des EV-neo etwa drei Minuten, ohne dass der Fahrer den Gashebel betätigt, schaltet das Auto Power Save System die Batterie ab, damit keine Energie vergeudet wird.

Synergien in der Produktion

Der EV-neo teilt sich die wichtigsten Motor-Bauteile, Fertigungsanlagen und Rohstoffe mit dem Hybridfahrzeug Insight. Der Motor des EV-neo hat dieselbe Grundstruktur wie der Elektrowagen Monpal ML200. Dadurch können beide Motoren auf derselben Fertigungslinie in Kumamoto montiert werden. Auf diese Weise realisiert Honda Synergievorteile in der Produktion und bringt seine Fertigungstechnologien für Elektrofahrzeuge weiter voran.

Spezifikationen

Produktname		EV-neo
Тур		Honda ZAD-AF71
Länge x Breite x Höhe (m)		1.830 x 0.695 x 1.065
Radstand (m)		1,250
Bodenfreiheit (m)		0,120
Sitzhöhe (m)		0,756
Heckhöhe (m)		0,630
Fahrzeuggewicht (kg)		106 (110)
Fahrer		1
Mindestwenderadius (m)		1,7
Motormodell und -	typ	AF71M, AC-Synchronmotor
Nennleistung (kW)		0,58
Maximale Leistung (kW [PS]@rpm)		2,8 [3,8] @ 5.000
Maximales Drehmoment (Nm[kgf m]/rpm)		11 [1,12] @ 2.000
Reichweite mit einer Ladung (km)		34 (gemäß Test bei 30 km/h auf ebener Strecke)
Batterietyp		Lithiumionenbatterie
Batteriespannung (V) / Kapazität (Ah)		72 / 12,6
Kupplung		Trockene Mehrscheibenkupplung
Reifengröße	Vorne	90/90-12 44J
	Hinten	100/80-12 56J
Bremsen	Vorne	Mechanische Vorder- und Hinterrad- Trommelbremse
	Hinten	Mechanische Vorder- und Hinterrad- Trommelbremse
Radaufhängung	Vorne	Teleskopisch
	Hinten	Triebsatzschwinge
Rahmen		Unterzugrahmen

Spezifikationen reguläres Ladegerät

Größe	B 244 x H 189 x T 172
	mm
Gewicht	3,2 kg
Ladezeit	Ca. 3.5 h (bei 25 °C Umgebungstemperatur)
Stromquelle	Einphasiger, dreiadriger 100V-Anschluss
Ladestromstärke	3,2 A
Eingangsleistung	100 V, 330 VA, 50/60 Hz
Ausgangsleistung	DC 86V / 3,2A, DC 14V / 2A

Spezifikationen Schnellladegerät

Größe	B 526 x H 400 x T 274
	mm
Gewicht	18,8 kg
Ladezeit	Ca. 0,5 h (bei 25 °C Umgebungstemperatur)
Stromquelle	Einphasiger, dreiadriger 200V-Anschluss
Ladestromstärke	28.4 A (heruntergeregelt auf 3,2 A)
Eingangsleistung	200 V, 2.500 VA, 50/60 Hz
Ausgangsleistung	DC 86V / 14.2A x 2, DC 14V / 2A